Напряжения в массивах грунтов, служащих основанием, средой или материалом для сооружения, возникают под воздействием внешних нагрузок и собственного веса грунта. Знание напряжений необходимо для расчетов деформаций грунтов, обусловливающих осадки и перемещения сооружений, для оценки прочности, устойчивости грунтов и давления на ограждения. Кроме того, для расчетов конструкций фундаментов сооружений необходимо знать реактивные напряжения, возникающие в контакте между фундаментом и основанием.
Распределение напряжений в грунтовой толще зависит от многих факторов. Прежде всего к ним относятся характер и режим нагружения массива, инженерно-геологические и гидрогеологические особенности площадки строительства, состав и физико-механические свойства грунтов. Формирование напряжений в грунтовой толще происходит не мгновенно при приложении нагрузки, а может развиваться весьма длительное время. Это связано со скоростью протекания деформаций и особенно сильно проявляется в пылевато-глинистых грунтах, где процессы фильтрационной консолидации и ползучести развиваются очень медленно.
Под действием собственного веса в массивах грунтов всегда формируется начальное напряженное состояние, иногда осложняемое различными геодинамическими процессами. Поэтому напряжения, возникающие в массивах грунтов от действия сооружения, накладываются на уже имеющиеся в нем собственные напряжения.
Это приводит к формированию сложного поля напряжений в грунтовой толще. Таким образом, определение напряжений в массиве грунтов представляет собой сложную задачу. Во многих случаях при инженерных расчетах решение этой задачи основывается на ряде упрощающих допущений, которые были рассмотрены.
Напомним, что к ним относятся предположения об однородности строения массива, изотропии механических свойств грунтов и их линейной деформируемости. Это позволяет для расчетов напряжений в грунтах использовать хорошо разработанный аппарат линейной теории упругости.
Определенное с помощью теории упругости поле напряжений соответствует конечному, стабилизированному, состоянию грунтов, т. е. тому моменту времени, когда все деформации, вызванные приложением нагрузок, уже завершились. В особых случаях, при проектировании наиболее ответственных -сооружений, а также при строительстве в сложных грунтовых условиях, применяются и более сложные модели, позволяющие определять изменение поля напряжений в процессе деформирования грунтов.
Одним из важнейших следствий применения теории упругости к расчетам напряжений в грунтах является постулирование принципа суперпозиции, т- е. независимости действия сил. Это позволяет рассчитывать напряжения в массиве от действия собственного веса грунта и нагрузок, вызываемых сооружением, независимо друг от друга и, суммируя полученный результат, определять общее поле напряжений. Основной целью полевых испытаний следует считать повышение информативности инженерно-геологических изысканий и надежности определения прочности, деформативных и фильтрационных свойств грунтов в массивах, включая и массивы техногенного происхождения(земляные сооружения, подсыпки при планировках и заменах, отвалы и др.).
В число специфических задач испытаний входят:
- изучение состояния и свойств грунтов, монолитные образцы и керны которых для лабораторных испытаний отобрать невозможно(крупнообломочных грунтов, водоносных и сыпучих песков, глинистых грунтов агрегатного сложения, некоторых илов, подверженным тиксотропным превращениям и при малейших воздействиях разжижающихся, и др.);
- учет масштабного эффекта, являющегося следствием макронеоднородности массива при относительной однородности состава, сложения, состояния и свойств грунта в монолитном образце (керне);
- непосредственное определение максимальной и структурной прочности грунтов в массиве;
- моделирование в массиве напряжений, возникающих при техногенных воздействиях на грунты-основания и среду проектируемых сооружений и зданий (бытовом плюс проектном давлениях, разгрузке массива вскрытием в нем строительных выработок, подтоплении и дренаже и др.);
- моделирование поведения грунтов в замачиваемых, оттаивающих, промораживаемых, набухающих, проседающих массивах, при явлениях тиксотропии и др.;
- моделирование взаимодействия грунтов и свай в массиве.
В гидроэнергетическом и некоторых других видах строительства в полевых испытаниях устанавливают также естественное напряженное состояние грунта в массиве на заданной глубине (бытовое и поровое давления, диагенетические и постгенетические напряжения и др.).
Свайный фундамент
Ограждение из стального шпунта (инвентарного) — ниже дна котлована на 2м, с возвышением над ГМВ или ПРС на 0,7м, расстояние от низа фундамента до края котлована 0 6м; Рогр = (периметр * высота * ушп), Рогр=2(2,9+2*0,6+10,25+2*0,6)*(1,5+2,0+0,7)*0,125=16,33 (т)
Механизированная разработка грунта с водоотлив ...
Инструменты и приспособления
Шпатель подмазочный предназначен для подмазки трещин. А так же как вспомогательный при больших объёмах шпатлевания.
Кисти флейцевые и маховые применяют для нанесения малярных составов на поверхность.
Ручники предназначены для окраски поверхности при небольших объёмах.
Валик малярный предназначен дл ...
Производство сварочных работ
1.1. Сварочные работы выполняются в соответствии с требованиями СНиП 3.03.01-87 и ГОСТ 5264-80 «Ручная дуговая сварка. Соединения сварные. Основные типы, конструктивные элементы и размеры».
1.2. Сварочные работы выполняются в соответствии с требованиями проекта или серии, указанной в проекте в необходимых ...