CorrectSociology

Проверка устойчивости движения к поверхности переключения

Необходимо обеспечить устойчивость движения относительно поверхности переключения. Для проверки этого условия воспользуемся вторым методом Ляпунова. Выберем функцию Ляпунова – такую, чтобы . Этому условию удовлетворяет функция , где . Тогда будет стремиться к 0, если

(3.15)

Рассмотрим, когда в нашем случае выполняется условие (3.15):

(3.16)

Подставив известные параметры в уравнение (3.16), получим:

(3.17)

Теперь необходимо получить оценку параметра . Значение параметра получено путем обработки экспериментальных данных, представленных в [11]:

[

].

Используя полученную оценку , подставим ее в (3.17):

=> .

Таким образом, – область значений параметра , определяющего быстродействие системы, при котором выполняется неравенство (3.17), а значит, система будет асимптотически устойчива относительно поверхности скольжения и, следовательно, в ней будет возникать скользящий режим.

Некоторые особенности искусственного освещения города
Социальный строй во многом определяет структуру города и его архитектуру. Очень четко это проявляется в различных решениях искусственного освещения городок, особенно в некоторых его элементах. В капиталистических городах оно носит вполне определенный характер, который сложился и проявляется в течение многих ...

Методы производства работ
Для монтажа надземной и подземной частей здания принят кран КБ-403. Его технические параметры: максимальная грузоподъемность – 8 т, максимальный вылет крюка l = 30 м, максимальная высота подъема крюка Н = 38 м. Выбор номенклатуры инструмента, инвентаря и приспособлений для выполнения всех видов СМР приводи ...

Расчет себестоимости
1) затраты на заработанную плату. Количество рабочих - 44 человека: Средняя заработанная плата с учетом роста 10 000 руб./чел. в месяц, начисления на зарплату - 26%, тогда затраты на зарплату Ззп, руб/год составляют: , руб/год 2) затраты на ремонт и содержание основных фондов. По калькуляции за 2009 го ...

Категории сайта


© 2011-2026 Copyright www.architectnew.ru